推荐盐模板法制备多孔氮碳复合物及其在超级电容器中的应用

将乐信息网 http://www.jianglexinxi.cn 2020-10-18 05:53 出处:网络
本站介绍的推荐盐模板法制备多孔氮碳复合物及其在超级电容器中的应用,下面小编带你了解详细情况。

本站介绍的推荐盐模板法制备多孔氮碳复合物及其在超级电容器中的应用,下面小编带你了解详细情况。

盐模板法制备多孔氮碳复合物及其在超级电容器中的应用

[0001]本发明提供了一种盐模板制备多孔氮碳复合物的方法;同时还涉及其在超级电容器中的应用。

[0002]超级电容器是介于传统电容器和二次电池之间的一种新型储能装置,其容量可达几百至上千法拉。与传统电容器相比,它具有较大的容量、较高的能量、较宽的工作温度范围和极长的使用寿命;与蓄电池相比,它又具有较高的功率密度和更好的循环寿命,且对环境无污染。因此,超级电容器是一种应用前景广阔的化学电源。
[0003]目前,已经有许多文献报道氮掺杂碳材料用作超级电容器电极材料。Zhao等人(Adv.Mater.,2010, 22,5202-5206)使用D-氨基葡萄糖作为前驱体,以氢氧化钾作为致孔剂,利用水热法制备多孔氮掺杂碳材料,在6mol -L 1氢氧化钾电解液中,其比电容可增大到220F.g 1O Wu 等人(J.Am.Chem.Soc.,2012,134,19532-19535)采用二氧化硅作为模板,制备了一种氮掺杂石墨烯气凝胶,其比表面积达295m2.g \比容量达226F.g 1O李莉香、陶晶等人(Acta Phys.-Chim.Sin.,2013, 29 (I),111-116)利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管,再炭化处理制备氮掺杂碳纳米管。这种氮掺杂碳纳米管在6mol *L 1氢氧化钾电解液中的比容量可增大到205F.g 1O
[0004]本发明利用盐模板法制备多孔氮碳复合物,其含氮量高,又具备较大的比表面积(370.59m2.g ')和优良的超级电容器性能(比电容可达364.93F.g 1 (扫速2mV.s 3),是一种理想的超级电容器的电极材料。同时,与其他多孔氮掺杂碳材料的制备方法相比,采用盐模板法制备多孔氮碳复合物,制备工艺简单、前驱体价格便宜,产物纯化简单,因而更容易实现规模化生产。



[0005]技术问题:本发明的目地在于提供了一种盐模板法制备多孔氮碳复合物的方法及其在超级电容器中的应用。
[0006]技术方案:本发明的盐模板制备多孔氮碳复合物的方法,包括以下步骤:
[0007]I)根据现有技术制备聚邻苯二胺基体;
[0008]2)将聚邻苯二胺基体与低熔点无机盐混合物在溶剂中均匀混合,置于管式炉中,在氮气保护下,高温热解,得氮碳复合物与盐混合物;
[0009]3)将氮碳复合物与盐混合物研磨,酸洗,水洗,去除盐模板,干燥后得多孔氮碳复合物材料。
[0010]其中:
[0011]所述的步骤I)中,将邻苯二胺单体分散在水中,聚合引发剂为过硫酸铵;引发剂与邻苯二胺单体总量的质量比为1:1?1:2 ;
[0012]聚合反应的时间为12?24h ;抽滤时用5%?10%的氨水和二次蒸馏水洗涤数次;反应后干燥的温度为80°C ;
[0013]所述的步骤2)中,
[0014]聚邻苯二胺基体与低熔点无机盐的质量比为1:1?1:15,低熔点无机盐的组成为氯化钠与氯化锌;氯化钠与氯化锌的摩尔比为1:1?1:6。
[0015]聚邻苯二胺基体与低熔点无机盐混合时,溶剂为水、乙醇、丙酮或N-甲基吡咯烷酮,使用超声混合,混合时间为5?lOmin。
[0016]高温热解的温度为500?1000°C ;升温速度为0.5?5°C-min S恒温时间为2?3h。
[0017]所述的步骤3)中,将氮碳复合物与盐混合物研磨,去模板时使用浓盐酸和二次蒸馏水洗涤数次;干燥温度为50?90°C ;干燥时间为12?24h。
[0018]采用本发明方法制备的多孔氮碳复合物用于超级电容器的电极材料时,将多孔氮碳复合物分散在二次蒸馏水中,浓度为I?5mg -mL %滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加浓度为0.05wt.%的Naf1n乙醇分散液,室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0019]有益效果:氯化钠与氯化锌是两种常见的无机盐,两者都具有较好的稳定性,按一定比例混合后,能够形成低熔点的固溶体。具有梯形吩嗪环状结构。在高温下,氯化钠与氯化锌熔化,在聚邻苯二胺(PoPD)中形成较大的孔隙以及大量的渗流结构,从而达到致孔的目的。同时,Poro热解碳化,形成具有氮原子掺杂的多环共轭大分子结构的氮碳复合物。通过调节Poro与混盐质量比的不同,或者加入表面活性剂(如十二烷基苯磺酸钠)可以进一步调节形成孔隙的大小。此外,Poro在热解过程中会释放出小分子气体,因此在材料表面会形成较小的孔隙。在盐模板与小分子气体的相互作用下,最终形成的产物具备大孔洞中包含小孔隙的结构,其比表面积得到了进一步提高。本发明制备的多孔氮碳复合物材料作为超级电容器的电极材料具有方法简单温和,成本低廉,性能优异,性质稳定的优点。

[0020]图1为多孔氮碳复合物的SEM图,
[0021]图2为多孔氮碳复合物在6M氢氧化钾溶液中的循环伏安测试图,
[0022]图3为多孔氮碳复合物在6M氢氧化钾溶液的充放电测试图。

[0023]本发明的一种盐模板法制备多孔氮碳复合物的方法,包括以下步骤:
[0024](I)根据现有技术制备得到聚邻苯二胺基体,即:将0.1?1.5g邻苯二胺分散于8OmL水中,先室温下搅拌20min,再置于低温水浴中搅拌30min,加入引发剂硫酸钱,搅拌0.5min,停止搅拌于低温下反应12h。抽滤、真空干燥后得聚邻苯二胺基体。
[0025]所述引发剂与单体总量的质量比为1:1?1:2 ;聚合反应时间为12?24h ;抽滤需要5%?10%的氨水和二次蒸馏水洗涤数次;干燥温度为80°C。
[0026](2)将聚邻苯二胺基体与氯化钠,氯化锌混合均匀,置于管式炉中,在氮气保护下,高温热解,得氮碳复合物与盐混合物。
[0027]所述聚邻苯二胺基体的质量是0.1?Ig ;聚邻苯二胺基体与无机盐的质量比为I?1:15 ;低熔点无机盐的组成为氯化钠与氯化锌;氯化钠与氯化锌的摩尔比为1:1?1:6。
[0028]所述聚邻苯二胺基体与无机盐混合,溶剂为水、乙醇、丙酮或N-甲基吡咯烷酮,溶剂的用量为I?1mL ;使用超声混合,混合时间为5?lOmin。
[0029]所述高温热解的温度为500?1000°C ;升温速度为0.5?5°C.min S恒温时间为2?3h。
[0030](3)将氮碳复合物与盐混合物研磨,酸洗,水洗,去除盐模板,干燥后得多孔氮碳复合物。
[0031]所述将氮碳复合物与盐混合物研磨,去模板时使用20mL浓盐酸和100mL 二次蒸馏水洗涤数次;干燥温度为50?90°C ;干燥时间为12?24h。
[0032](4)将多孔氮碳复合物分散在二次蒸馈水中(I?5mg.mL 3。取3?20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加I?10 yL的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0033]下面通过具体实例进一步说明本发明制备新型氮碳复合物的具体方法。
[0034]实例一
[0035](I)聚邻苯二胺基体的制备
[0036]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于低温水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0037](2)聚邻苯二胺基体与混盐的热处理
[0038]将聚邻苯二胺基体与混盐以1:1的摩尔比混合置于管式炉中,其中聚邻苯二胺0.lg,氯化钠0.02371g,氯化锌0.07629g,在氮气保护下,800°C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0039](3)去除盐模板
[0040]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物材料。
[0041](4)电极制备
[0042]将多孔氮碳复合物分散在二次蒸馏水中(4mg.mL》。取20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0043]实例二
[0044](I)聚邻苯二胺基体的制备
[0045]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0046](2)聚邻苯二胺基体与混盐的热处理
[0047]将聚邻苯二胺基体与混盐以1:3的摩尔比混合置于管式炉中,其中聚邻苯二胺0.1g,氯化钠0.07108g,氯化锌0.2289g,在氮气保护下,800 °C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0048](3)去除盐模板
[0049]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物。
[0050](4)电极制备
[0051]将多孔氮碳复合物分散在二次蒸馏水中(2mg.mL 3。取20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0052]实例三
[0053](I)聚邻苯二胺基体的制备
[0054]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0055](2)聚邻苯二胺基体与混盐的热处理
[0056]将聚邻苯二胺基体与混盐以1:5的摩尔比2例混合置于管式炉中,其中聚邻苯二胺0.lg,氯化钠0.1186g,氯化锌0.3814g,在氮气保护下,800°C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0057](3)去除盐模板
[0058]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物材料。
[0059](4)电极制备
[0060]将多孔氮碳复合物分散在二次蒸馈水中(2mg.mL》。取10 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加10 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0061]实例四
[0062](I)聚邻苯二胺基体的制备
[0063]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0064](2)聚邻苯二胺基体与混盐的热处理
[0065]将聚邻苯二胺基体与混盐以1:6的摩尔比混合置于管式炉中,其中聚邻苯二胺0.1g,氯化钠0.1422g,氯化锌0.4577g,在氮气保护下,800 °C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0066](3)去除盐模板
[0067]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物。
[0068](4)电极制备
[0069]将多孔氮碳复合物分散在二次蒸馈水中(2mg.mL》。取10 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0070]实例五
[0071](I)聚邻苯二胺基体的制备
[0072]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0073](2)聚邻苯二胺基体与混盐的热处理
[0074]将聚邻苯二胺基体与混盐以1:6的摩尔比混合置于管式炉中,其中聚邻苯二胺0.1g,氯化钠0.1422g,氯化锌0.4577g,在氮气保护下,700 °C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0075](3)去除盐模板
[0076]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物。
[0077](4)电极制备
[0078]将多孔氮碳复合物分散在二次蒸馏水中(4mg.mL》。取20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0079]实例六
[0080](I)聚邻苯二胺基体的制备
[0081]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0082](2)聚邻苯二胺基体与混盐的热处理
[0083]将聚邻苯二胺基体与混盐以1:6的摩尔比混合置于管式炉中,其中聚邻苯二胺0.1g,氯化钠0.1422g,氯化锌0.4577g,在氮气保护下,900 °C高温热解2h,升温速率为2.50C.min \得到氮碳复合物与盐混合物。
[0084](3)去除盐模板
[0085]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物。
[0086](4)电极制备
[0087]将多孔氮碳复合物分散在二次蒸馏水中(4mg.mL》。取20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0088]实例七
[0089](I)聚邻苯二胺基体的制备
[0090]在250mL圆底烧瓶中加入1.2g邻苯二胺,分散在80mL 二次水中搅拌20min,再置于O?5°C水浴中搅拌30min,后加入过硫酸铵2.4g,将烧瓶置于O?5°C的冰箱中反应12h。取出抽滤,用质量分数为5%的氨水和二次蒸馏水洗至滤液澄清,干燥,得聚邻苯二胺基体。
[0091](2)聚邻苯二胺基体与混盐的热处理
[0092]将聚邻苯二胺基体与混盐以1:6的摩尔比混合置于管式炉中,其中聚邻苯二胺0.1g,氯化钠0.1422g,氯化锌0.4577g,在氮气保护下,1000 °C高温热解2h,升温速率为
2.50C.min \得到氮碳复合物与盐混合物。
[0093](3)去除盐模板
[0094]将氮碳复合物与盐混合物研磨成粉末,分别用20mL盐酸,100mL的二次水处理,去除盐模板,干燥后得多孔氮碳复合物。
[0095](4)电极制备
[0096]将多孔氮碳复合物分散在二次蒸馈水中(4mg.mL》。取20 μ L滴加在玻碳上,室温下干燥器中干燥2h后,在其表面滴加5 μ L的Naf1n乙醇分散液(0.05wt.% ),室温下干燥器中干燥2h,制得修饰后的超级电容器电极。
[0097]图1为本发明制备的多孔氮碳复合物的SEM图。从图1中可以看出,本发明所制备的多孔氮碳复合物具备大量的孔隙,表面皱缩,大孔隙的表面包含大量小缝隙,表明材料具有较大的比表面积。
[0098]图2为本发明制备的多孔氮碳复合物在6M氢氧化钾溶液中的循环伏安测试图。从图2中可以看出,本发明制备的多孔氮碳复合物有优良的电容性能,图中的曲线有类似矩形的形状,显示了良好的双电层容量性能,比电容可达364.93F.g 1(扫速2mV.s ^,比能量高达 50.68ffh.kg 1O
[0099]图3为本发明制备的多孔氮碳复合物在6M氢氧化钾溶液中的充放电测试图。从图3中可以看出,本发明制备的多孔氮碳复合物的充放电性能较好。在10mA g1的充放电电流下,能快速充放电,比电容值高达221.2F.g、比能量高达33.35ffh.kg、

1.一种盐模板制备多孔氮碳复合物的方法,其特征在于该方法包括以下步骤: 1)根据现有技术制备聚邻苯二胺基体; 2)将聚邻苯二胺基体与低熔点无机盐混合物在溶剂中均匀混合,置于管式炉中,在氮气保护下,高温热解,得氮碳复合物与盐混合物; 3)将氮碳复合物与盐混合物研磨,酸洗,水洗,去除盐模板,干燥后得多孔氮碳复合物材料。2.如权利要求1所述盐模板制备多孔氮碳复合物的方法,其特征在于,所述的步骤1)中,将邻苯二胺单体分散在水中,聚合引发剂为过硫酸铵;引发剂与邻苯二胺单体总量的质量比为1:1 ~ 1:2 ; 聚合反应的时间为12 ~ 24 h ;抽滤时用5 % ~ 10 %的氨水和二次蒸馏水洗涤数次;反应后干燥的温度为80 °C。3.如权利要求1所述盐模板制备多孔氮碳复合物的方法,其特征在于,所述的步骤2)中,聚邻苯二胺基体与低熔点无机盐的质量比为1:1~ 1:15,低熔点无机盐的组成为氯化钠与氯化锌;氯化钠与氯化锌的摩尔比为1:1 ~ 1:6。4.如权利要求1所述盐模板制备多孔氮碳复合物的方法,其特征在于,所述的步骤2)中,聚邻苯二胺基体与低熔点无机盐混合时,溶剂为水、乙醇、丙酮或N-甲基吡咯烷酮,使用超声混合,混合时间为5 ~ 10 min。5.如权利要求1所述盐模板制备多孔氮碳复合物的方法,其特征在于,所述的步骤2)中,高温热解的温度为500~ 1000 0C ;升温速度为0.5 ~ 5 °C.min S恒温时间为2 ~3 h06.如权利要求1所述盐模板制备多孔氮碳复合物的方法,其特征在于,所述的步骤3)中,将氮碳复合物与盐混合物研磨,去模板时使用浓盐酸和二次蒸馏水洗涤数次;干燥温度为50 ~ 90 0C ;干燥时间为12 ~ 24 h。7.一种如权利要求1所述方法制备的多孔氮碳复合物用于超级电容器的电极材料,其特征在于:将多孔氮碳复合物分散在二次蒸馈水中,浓度为I ~ 5 mg.mL %滴加在玻碳上,室温下干燥器中干燥2 h后,在其表面滴加浓度为0.05 wt.%的Naf1n乙醇分散液,室温下干燥器中干燥2 h,制得修饰后的超级电容器电极。
本发明提供了一种盐模板法制备多孔氮碳复合物的方法及其在超级电容器中的应用,包括以下工艺步骤:1)将邻苯二胺单体分散在水中,搅拌使其混合均匀,在低温水浴中继续搅拌,加入聚合引发剂,搅拌将引发剂混合均匀,反应完成后,抽滤,真空干燥,得聚邻苯二胺基体;2)将聚邻苯二胺基体与氯化钠,氯化锌混合均匀,置于管式炉中,在氮气保护下,高温热解,得氮碳复合物与盐混合物。3)将氮碳复合物与盐混合物研磨,酸洗,水洗,去除盐模板,干燥后得多孔氮碳复合物。此制备方法简单,温和,制得的多孔氮碳复合物活性高,比表面积大,价格低廉,组装成的电容器有较大的比电容值。因而可在低成本的基础上实现超级电容器。
H01G11/86, H01G11/38, H01G11/30
CN105006374
CN201510514569
李颖, 雷泽坤, 刘松琴
东南大学
2015年10月28日
2015年8月20日

推荐盐模板法制备多孔氮碳复合物及其在超级电容器中的应用的相关内容如下:

本文标题:推荐盐模板法制备多孔氮碳复合物及其在超级电容器中的应用
http://www.jianglexinxi.cn/yanergaozhi/522271.html

0

精彩评论

暂无评论...
验证码 换一张
取 消